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Abstract— In the weight method, which is known as one of 

solutions to the multi-objective optimization problem, it is 

possible to obtain Pareto optimal solutions by repeating the 

different weighting coefficients from previous ones and solving 

by using them. In this research, as a reverse procedure to the 

above, when a solution preferred by an operator is given, a 

method of estimating the range of the weighting coefficients 

where this solution becomes optimal is proposed. We regard a 

target problem as a mathematical programming problem and 

estimate the range of weighting coefficients for each purpose 

based on the basic idea of simplex method. Through some 

examples, the effectiveness of the proposed approach is 

examined, and it is confirmed that we can estimate the range of 

weighting coefficients where the solution preferred by the 

operator becomes optimal, when this solution exists in feasible 

region. 

 

Index Terms— multi-object, weight method, parameter 

tuning, optimize, weighting coefficient.  

I. INTRODUCTION 

  Combined with the increase of demand for industrial 

products, high quality and diversification of demand, the scale 

of production and logistics has become larger and more 

complicated. Under such circumstances, production plans and 

distribution plans that can realize high efficiency and high 

productivity are required to carry out efficient procurement, 

transportation, production and shipment etc [1][2][3]. In 

response to this request, the creation of production plan and 

logistics plan is considered as "optimally achieving object 

under given constraints for the mathematical model", that is, 

as solving the mathematical programming problem. And then 

many techniques to solve the problem have been developed 

[4][5][6]. In the mathematical programming problem, it is 

important to accurately describe what kind of object it is and 

what solution is required. With these descriptions, the 

constraints and objectives of the target problem will be 

clarified.  

Here, in the industry, target plans need to be able to deal 

with the problems, where there are plural purposes as 

evaluation indicators, in many cases. These purposes are, for 

example, to make the procurement cost as low as possible,  

shorten the transportation time as much as possible, shorten 

the construction period as much as possible, and keep the  
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delivery schedule as much as possible. But it is common that 

these objectives are contradictory and the units are also 

different. The optimization problems with multiple objectives 

are called multi-objective optimization problems and it is 

generally difficult to obtain a solution as compared with a 

case where the purpose is single [7][8][9][10]. 

To solve such a problem, for example, a weight method, 

where  weighting coefficients are set for each purpose and the 

problem is solved by solving the sum total, is used 

[11][12][13]. Depending on the weighting coefficients, which 

mean importance degree of these objectives, the planned 

results are significantly different. Therefore, this setting is 

very important in order to obtain a satisfactory result for 

operators. 

However, in many cases, operators, who are actually 

making plans, do not regard the target multi-objective 

problems as mathematical programming problems, create 

solutions independently, and select preference solutions 

according to their own judgments. In such cases, it is difficult 

to quantitatively evaluate which purposes operators put 

emphasis on and which purposes operators select the solution  

preferred . 

Therefore, in this paper, we assume that the process where 

operators optimize the plan with plural purposes and make a 

preference solution without considering the process as 

solving mathematical programming problem, is the process 

where operators solve the single-objective optimization 

problem with the weighted sum of the each purpose sum on 

the base of the formulation of the mathematical programming 

problem, especially under the linear programming problem. 

Under this assumption, we propose a method to estimate the 

range of weighting coefficients of each purpose from the 

solution actually preferred by the operator. First, the 

formulation of an optimization model of the problem is 

described. Then, we propose a method of estimating the range 

of the weighting coefficients where this solution becomes 

optimal when a solution preferred by the operator is given. 

Finally, through some experiments with examples of practical 

size, it is confirmed that the proposed method works 

correctly. 

II. DESCRIPTION OF THE PROBLEM 

In this paper, we deal with a multi-objective linear 

programming problem which minimizes objective function 

using weight method as the target problem. Here we define 

the decision variable as , the coefficient matrix for the 

constraints as , the right hand side constant vector 

for the constraints as , and the cost coefficient matrix 

as . Then using these definitions, we describe the 

objective function and constraints of the multi-objective 
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linear programming problem. 

A. The objective function 

Using the decision variable  and the cost coefficient 

matrix , the objective function of the multi-objective linear 

programming problem is described below. 

  (1)

Here, the objective function of the single-objective 

optimization problem obtained by introducing the weighting 

coefficients  for each objective of the equation (1) is 

given by the equation (2). 

  (2)

And then, the equation (3), and (4) are obtained from the 

preconditions of the weight method as below. 

  (3)

  (4)

B. The constraints 

Using the decision variable , the coefficient matrix  and 

the right hand side constant vector , the constraints of the 

multi-objective linear programming problem are described 

below. 

  (5)

  (6)

 

Here, to simplify of the problem, it is assumed that all 

constraints are independent, that is, . And also, it 

is assumed that there is no degeneracy in the basic solutions 

obtained under the constraints. 

III. THE RANGE OF WEIGHTING COEFFICIENTS WHERE THE 

PREFERENCE SOLUTION IS OPTIMAL IN MULTI-OBJECTIVE 

OPTIMIZATION 

In this section, we describe the framework concerning the 

idea of the estimation of the range of weighting coefficients 

by the proposed approach which takes reverse procedure from 

the normal procedure. The purpose here is that when a 

solution  preferred by an operator is given,  we estimate the 

range of weighting coefficients  by which this solution  

is the optimal solution of the problem with the above 

scalarized objective function which is described as the 

equation (2), or it is to find the range of the weighting 

coefficients  where the distance between the preference 

solution and the optimal solutions of the problem obtained, 

when changing the weighting coefficients  within the range 

of the equation (5), is closest. 

A. The scope of the preference solutions to be handled 

Preference solutions  to be handled are classified into 

the following three categories. 

(a) The preference solution  is an infeasible solution. 

(b) The preference solution  is a feasible solution, but 

not Pareto optimal or not a basic solution. 

(c) The preference solution  is a basic solution which 

is Pareto optimal. 

In this paper, we consider except when preference solutions 

 are infeasible solutions categorized in (a). Since the 

examination in the case (a), where preference solutions  

are infeasible solutions, is difficult to examine as compared 

with other cases described above, we will not deal with it here 

and it will be given to the next study. In this study, considering 

these (b) and (c) cases, estimation of the range of the 

weighting coefficients is investigated in two stages. At first, 

we will examine the case (b). In this examination, we convert 

the preference solution   that is a feasible solution but not a 

Pareto optimal or not a basis solution, to a basic solution 

which is Pareto optimal in some way. If we can transfer the 

preference solution , which is a feasible solution but not a 

Pareto optimal or not a basis solution, to the basic solution 

which is Pareto optimal in this way, it can be considered as the 

case (c). As a second step, when the preference solution 

that is a basic solution which is a Pareto optimal is given, 

that is, for the case (c), we estimate the range of weighting 

coefficients  where this solution is an optimal solution of 

the linear programing problem with the scalarized objective 

function. By following the above procedure, the case (b) and 

the case (c) can be handled. We will discuss these procedures 

in detail at the next chapter. 

B. Obtaining the basic solution which is Pareto optimal 

In this section, when the preference solution  is a 

feasible solution, but not Pareto optimal or it is not a basic 

solution, we investigate the method to convert it to a basic 

solution which is Pareto optimal. As these methods, the 

methods described like below exist. 

 Transferring the preference solution . 

 Modifying the linear programing problem. 

In this study, we consider the case where we modify the 

linear programing problem. For this, the methods described 

like below exist. 

 Modifying the cost coefficient matrix  for the 

objective function. 

 Modifying the coefficient matrix  for the 

constraints. 

 Modifying the right hand side constant vector  for 

the constraints. 

In this study, we consider the case where we modify the 

right hand side constant vector  for the constraints. In this 

method, we consider this modification using the concept of 

distance. At this time there are two ways to consider distance 

as follows. 

 Distance in solution space. 

 Distance in objective function space. 

In this study, we consider the case where we use distance in 

solution space. 

We define the constraints including non-negative 

constraints as the expanded constraints. Accord to expansion 

of the constraints, the coefficient matrix of the expanded 

constraints is defined as the expanded coefficient matrix , 
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and the constant vector is expanded to the expanded constant 

vector . The set of subscripts representing the number of 

row in the expanded coefficient matrix of the expanded 

constraints, on which there is at least one Pareto optimal 

solution, is defined as . Here this set is assumed to be 

obtained naturally, and  is described as the equation (7) 

below.  The expanded constraints having elements of this set 

 as subscripts are defined as Pareto optimal constraints. 

  (7) 

Based on the above, when a preference solution that is not a 

Pareto optimal or is not a basis solution is given, we calculate 

the distance between the preference solution and each 

constraint in the solution space respectively, and the 

expanded constant vector  of the Pareto optimal constraints 

is modified in order from the closest distance constraint. By 

doing this, we propose a method to convert the preference 

solution to the basic solution which is Pareto optimal. 

At first, we calculate the distance between the preference 

solution  and each Pareto optimal constraint in the solution 

space respectively. In defining  as the row vector of the i-th 

row of the expanded coefficient matrix , the boundary of 

the Pareto optimal constraint can be expressed by the 

following equation (8). 

  (8)

In this case, the distance  between the 

preference solution and the hyperplane formed by each Pareto 

optimal constraint can be expressed by the following equation 

(9). 

  (9)

Then, the expanded constant vector  of the Pareto 

optimal constraints is modified in order from the closest 

distance constraint. Then, we modify  elements of the 

expanded constant vector  in order from the closest 

distance so that the preference solution passes on the 

boundary of the Pareto optimal constraints corresponding to 

the modified elements. Letting  be the expanded constant 

vector after modified,  is expressed by the following 

equation (10). 

  (10)

After modification of expanded constant vector  to , 

the preference solution  becomes a basis solution which is 

Pareto optimal. 

The update of the right hand side constant vector  

(parallel movement) for the constraints based on this idea is 

summarized as follows. 

1○ Calculate the distances between the preference 

solution  and the each boundary of each Pareto optimal 

constraint in the solution space respectively. 

 

2○ Define the set in which subscripts of Pareto optimal 

constraint are rearranged in descending order of 

distance. 



3○ Modify  elements of the expanded constant vector  in 

order from the closest distance so that the preference 

solution  passes on the boundary of the Pareto optimal 

constraints corresponding to the modified elements, and 

get . 



C. Estimating the range of the weighting coefficients 

In the previous section, the linear programming problem is 

modified, so that the preference solution  becomes a basic 

solution which is Pareto optimal, by modifying the constant 

vector  (parallel movement) of the constraint conditions. In 

this section, the idea and procedure of the estimation method 

to obtain the range of the weighting coefficients , which 

make the preference solution  the optimal solution for the 

modified linear programming problem, will be described in 

detail. 

In this study, we use the concept of the relative cost 

coefficients of the simplex method to estimate the weighting 

coefficients. The simplex method is that at first the value of 

the objective function from one vertex of the feasible region is 

calculated, further the calculation target is moved to the 

adjacent vertex so that the value of the objective function 

decreases, and finally the optimal solution is obtained. When 

searching the solution so that the value of the objective 

function decreases, the search is performed based on the 

relatives cost coefficients. In the case of the problem in 

standard form, the solution is optimal if and only if the 

relative cost coefficients are non-negative [14]. For this 

reason, in case that the preference solution  which is the 

basic solution that is Pareto optimal is given, the procedure to 

obtain the range of the weighting coefficients , where the 

preference solution  is optimal, is equivalent to the 

procedure to calculate the relative cost coefficients for the 

preference solution  and to obtain the range of the 

weighting coefficients , where the relative cost coefficients 

become non-negative. First of all, in order to use Simplex 

method, it is necessary to formulate the target problem into 

the standard form by introducing slack variable . The 

problem that converted the target problem into the standard 

form using  is described as follows. At this time, the 

slack variable  is a -dimensional vector,  is a 

-dimensional identity matrix, and  is a zero matrix of  

rows and  columns. Therefore,  is the 

-dimensional vector,  is the  matrix, 

and  is the  matrix. 

  (11)

     subject to 

   (12)


Here, substituting the preference solution  for  in the 

equation (11), the value of the slack variable  is expressed by 

the following equation (12). 
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  (13)

By using the values of preference solution  and the slack 

variable ,  is obtained as a constant vector. The variable 

whose value is positive among  is defined as the basic 

variable , and the variable whose value is zero among  is 

defined as the nonbasic variable . When the constraints 

(12) is transformed and represented by the basic variable  

and the nonbasic variable , the following equation (14) is 

obtained. Here, the matrices  and  are obtained by 

dividing the matrix  into columns corresponding to basic 

variables  and columns corresponding to nonbasic 

variables . These matrices are defined as the basic matrix 

 and the nonbasic matrix  respectively. Since it is 

assumed that each constraint is independent and there is no 

degeneration in the preference solution ,  is the  

regular matrix, and  is the  matrix. 

  (14)

Similarly, when the objective function (11) is expressed 

using the basic variable  and the nonbasic variable , the 

following equation (15) is obtained. Here, the matrices  

and  are obtained by dividing the matrix  into columns 

corresponding to basic variable  and columns 

corresponding to nonbasic variable . These matrices are 

defined as the cost basic matrix  and the cost nonbasic 

matrix  respectively. And here  is the  matrix, 

and  is the  matrix. 

  (15)

 

By eliminating  from equation (15) using equation (14), 

the objective function is expressed by the following equation 

(16). 

 (16)

 

The coefficients of   in the equation (16) are the relative 

cost coefficients. In defining the relative cost coefficients as 

, they can be expressed by the following equation (17).  

  (17)

 

The preference solution  is an optimal solution if and 

only if the relative cost coefficients  are nonnegative. 

That is, the range of the weighting coefficients , which 

make the preference solution  the optimal solution, are 

calculated by the previous equation (17), and the equation (3) 

, (4) which are preconditions of the weight method. In 

summary, it can be described as follows. 

 

 

 

 
 

IV. CALCULATION EXAMPLE 

In this chapter, by using the estimation method proposed in 

the previous chapter, we estimate the range of the weighting 

coefficients  for an example. Also, we choose weighting 

coefficients  appropriately from the range of weighting 

coefficients obtained as the estimation result, and optimize 

the linear programing problem using the weighting 

coefficients  without giving a preference solution . By 

doing this, it is confirmed that the initially preference solution 

 is correctly obtained, and it is confirmed whether the 

proposed estimation method functions correctly.  

A. Example 

We consider the following single-objective optimization 

problem which is obtained by applying the weight method for 

the multi-objective optimization problem having 2 objects, 3 

constraints and 2 decision variables. 






 

The solution space constructed by the constraints for the 

example is shown in Fig.  1. 

B. Calculation Result and Discussion 

In this example, the case that the preference solution is 

feasible but is neither Pareto optimal nor a basic solution is 

considered. A case where we select the following preference 

solution  is considered. 

 
Here, in order to modify the constant vector  (parallel 

movement) of the constraints, we consider the distance 

between the preference solution  and the hyperplane 

constructed by each Pareto optimal constraint. Therefore, we 

consider the expanded coefficient matrix  and the expanded 

constant vector . The expanded coefficient matrix  and 

the extended constant vector obtained by expanding the 

coefficient matrix and constant vector to those including 

nonnegative conditions are as follows. 

 

Fig.  1 THE SOLUTION SPACE FOR THE EXAMPLE 
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Here, the set  of subscripts representing the number of 

row in the expanded coefficient matrix of the expanded 

constraints where at least there is one Pareto optimal solution, 

is {1, 2, 4, 5}. Therefore, the expansion coefficient matrix   

and the expanded constant vector   are as follows. 

 
Next, according to the procedure for modifying the 

constant vector  (parallel movement) of the constraints,  

is obtained. 

1○ Calculate the distances . 

 

 


 

 
2○ Define the set . 

 
3○ Get . 

 

 

 
 

Since  is the constant vector after modifying the constant 

vector  (parallel movement) of the constraints, the constraint 

after modifying is as follows. 

 



 

The solution space formed by the modified constraints is 

shown in Fig.  2. 

 

Fig.  2 THE SOLUTION SPACE FOR THE MODIFIED CONSTRAINTS 

Using this modified constraint, we can proceed to the next 

procedure to estimate the range of the weighting coefficients 

as follows. 

1○ We introduce the slack variables . Along with this, 

expand , ,  to , ,  and make the problem into a 

standard form. 

 

2○ Calculate the value of the slack variable . 

 
3○ Obtain , , , , , , . 

 

 

 
4○ Calculate the relative cost coefficients  

 
5○ Calculate the range of the weighting coefficients  

 
Here, to verify whether the proposed estimation method 

works correctly for the modified constraints, optimizations 

for the cases when the weighting coefficients are set within the 

obtained range and other cases when the weighting 
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coefficients are set outside the range are examined. 

 Case1 :  (out of the range) 

Optimal value   

 Case2 :   (within the range) 

Optimal value   

 Case3 :   (within the range) 

Optimal value   

 Case4 :   (out of the range) 

Optimal value   

As results of the above verification, using the proposed 

estimation method, it was confirmed that the range of the 

weighting coefficients can be correctly estimated when the 

preference solution is Pareto optimal and non-degenerate 

basic solution. 

V. CONCLUSION 

In this paper, when a solution preferred by an operator is 

given, a method of estimating the range of the weighting 

coefficients where this solution becomes optimal is proposed. 

To extend to consider the cases where the preference solution 

is an feasible solution but not Pareto optimal or it is not a basic 

solution, we proposed the method which is constructed by two 

stages of carrying out acquisition of the basis solution which 

is Pareto optimal and then estimating the weighting 

coefficients. 

In the proposed estimation method of the range of 

weighting coefficients, it was confirmed that we can estimate 

the range of weighting coefficients that the preference 

solution is optimal to the following cases. 

 The preference solution is a basic solution which is 

Pareto optimal. 

 The preference solution is not Pareto optimal or not a 

basic solution, but Pareto optimal constraints is 

given. 

We also confirmed that the proposed estimation method 

works correctly by applying some cases of appropriate 

weighting coefficients from the range of weighting 

coefficients obtained by estimating weighting coefficients and 

by being optimized for examples. 

The following issues have been left for further studies. 

 The preference solution is not Pareto optimal or not a 

basis solution and Pareto optimal constraints are not 

given. 

 The preference solution is an infeasible solution. 
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